G6PD Deficiency-Induced Hemolysis and Malaria

G6PD Deficiency is the most common Enzymopathy in the World

G6PD Deficiency Phenotypes

Hemolytic Anemia 11/100 deaths

Neonatal Jaundice 7.3/1000

G6PD Deficiency's Indirect Consequence

How are G6PD deficiency, Hemolysis, and Malaria related?

How does G6PD cause Susceptibility for Hemolysis?

No Build-up of Reactive Oxygen Species

What is the function of normal G6PD?

What Proteins Interact with G6PD?

How well conserved is G6PD?

5	NAD binding domain	n C-terminal domain	
	NAD binding domain	C-terminal domain	
	NAD binding domain	C-terminal domain	
	NAD binding domain	C-terminal domain	
	NAD binding domain	C-terminal domain	
	NAD binding domain	C-terminal domain	
000	NAD binding domain	C-terminal domain	

Can G6PD be upregulated?

Proc. Natl. Acad. Sci. USA Vol. 82, pp. 1465-1469, March 1985 Genetics

Tissue-specific levels of human glucose-6-phosphate dehydrogenase correlate with methylation of specific sites at the 3' end of the gene

(DNA methylation/housekeeping genes/transcriptional regulation)

GIORGIO BATTISTUZZI*[†], MICHELE D'URSO*[‡], DANIELA TONIOLO[‡], G. M. PERSICO[‡], AND LUCIO LUZZATTO*

*Department of Haematology, Royal Postgraduate Medical School, Ducane Road, London W12 OHS, England; and #International Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche, Via Marconi 10, 80125 Naples, Italy

Communicated by Paul A. Marks, October 24, 1984

Goal: How does G6PD Methylation affect G6PD levels in Pregnant Females?

Normal Amount of Red Blood Cells

Anemic Amount of Red Blood Cells

How does G6PD Methylation affect G6PD levels (NADP Production) in Pregnant Females?

Aim 1:

Knockout conserved methylation sites of G6PD to identify methylation sites associated with normal levels of NADPH production in pregnant females.

Aim 2:

Identify a small molecule that affects methylation of G6PD and can be taken with Primaquine in pregnant females without hemolysis

Bisulfite DNA-Seq Chemical Screen Fluorescent Spot Test

Bisulfite DNA-Seq

Aim 3

Determine differences in protein interaction complexes required for NADP metabolism between methylated and unmethylated G6PD deficient pregnant zebrafish

CRISPR TAP-MS Fluorescent Spot Test

Bisulfite DNA-Seq

ClustalOmega

CRISPR

Fluorescent Spot Test

What Model Organism Will I Use?

WT (Normal NADPH)

G6PDd (Low NADPH)

Aim 1: Identify conserved methylation sites in G6PD normal pregnant zebrafish using Bisulfite Sequencing

Aim 1: Identify conserved methylation sites in G6PD normal pregnant zebrafish using Phylogenomics and ClustalOmega

NAD binding domain

C-terminal domain

Aim 1: Identify conserved methylation sites in G6PD normal pregnant zebrafish using CRISPR/Cas9 and Fluorescent Spot Test

NADPH is naturally fluorescent and represents G6PD level

Aim 2: Identify a small molecule that affects G6PD methylation pattern of Pregnant Zebrafish

Aim 2: Identify a small molecule that affects methylation, destroys malaria, and can be taken with Primaquine without hemolysis

Aim 2: Identify a small molecule that affects G6PD methylation destroys malaria, and can be taken with Primaquine without hemolysis

Aim 3: Determine differences in Protein-complexes associated with methylation changes in Pregnant Zebrafish

Use CRISPR/Cas9 to create treatment group with no methylation

Aim 3: Determine differences in Protein-complexes associated with methylation changes

Aim 3: Determine differences in Protein-complexes associated with methylation changes

Conclusions

Future Directions

Pharmacogenomics – tailoring drug treatment to one's genes

Determine if methylation effects are similar in humans and other organisms

Discover how to rescue the functional G6PD gene

References

http://soliris.net/resources/images/consq-hemolysis-bg.jpg

https://openi.nlm.nih.gov/detailedresult.php?img=PMC2715191_omcl0101_0015_fig001&req =4

http://intranet.tdmu.edu.ua/data/kafedra/internal/chemistry/classes_stud/en/stomat/ptn/2/03. %20introduction%20to%20%20metabolism.%20investigation%20of%20aerobic%20and%20a naerobic%20oxidation%20of%20glucose.htm

http://geneticsandpublichealth.com/2016/06/05/glucose-6-phosphate-dehydrogenase-deficiency/

https://www.thediabetescouncil.com/diabetes-and-anemia-are-they-related/

https://www.researchgate.net/publication/236088554 Review of key knowledge gaps in g lucose-6phosphate dehydrogenase deficiency detection with regard to the safe clinical deploy ment of 8-aminoquinoline treatment regimens A workshop report

https://media.springernature.com/full/springer-static/image/art%3A10.1186%2F1475-2875-11-418/MediaObjects/12936_2012_Article_2605_Fig6_HTML.jpg

https://www.translationalres.com/article/S1931-5244(14)00336-3/fulltext

https://string-db.org/cgi/network.pl?taskId=9ofOGJV7JRtJ

https://ourworldindata.org/malaria

https://www.ncbi.nlm.nih.gov/books/NBK65119/

https://www.nhlbi.nih.gov/health-topics/hemolytic-anemia